Beam Based Alignment At RHIC

Jen Niedziela, Todd Satogata, Rob Michnoff

(and probably Al Marusic...)

RHIC Retreat

July 12, 2006

Motivation

Goal: Compensate for quadrupole misalignments/BPM offsets by calibrating BPMs to read zero (via the use of electronic offsets) when beam is steered through quadrupole center.

- o Improve orbit through IRs
 - Luminosity development
 - Background minimization
 - Maximize aperture
- o Polarization preservation
- Study long term reproducibility of calculated electronic offsets

Method

o Measure beam offset from quad center

Dipole kick from the quad misalignment can be used to calculate the offset in position

$$x_{q} = \frac{\theta}{\Delta k} \left(1 + \frac{k\beta}{2 \tan(\pi Q)} \right)$$

N.B. Additional dispersive term is required if dispersion at quad is large.

The Method, Improved

o Vary strength of quad at different bump settings across the quad, minimizing the dipole kick as a function of BPM reading:

- o Accounts for closed orbit distortion from dipole kick
- o Pros/cons
 - •Nullify bump leakage by taking a baseline at every measurement.
 - Accurate with many (>5) bump settings.
 - •SLOW.

Experimental Time

- o Three runs, all dedicated APEX time
 - Motivated by question of orbit changes in IR6 and IR8.
 - Test installation of survey offset in IRs
- o Setbacks, improvements, and improvisations:
 - First run was essentially a loss due to data collection failure.
 - Improved scripts after first run to use DoLiveStrengths interface in WfgMan (also used for ORM)
 - Faster and less intrusive than previous method (.tcl'ing CDEV)
 - Reverted with a ramp activate (easy return to APEX)
 - Discovered some interesting things about the orbit

Experimental Runs

Quad Optics IR 6 May 3 – Fill 7809

Quad	$k[m^{-2}]$	ßx[m]	ßy[m]
bo6-qd1	-0. 08092	70. 640	83. 978
bo6-qd3	-0. 11459	52. 556	159. 976
bi 5-qf3	0. 11446	135. 445	65. 159
bi 5-qf1	0. 08115	73. 971	86. 594
yi 6-qf1	0. 08115	72. 661	85.830
yi 6-qf3	0. 11476	133. 153	64. 460
yo5-qd3	-0. 11448	52. 487	157. 468
yo5-qd1	-0. 08092	70. 788	82. 726

Machine optics acquired from online model at run time.

Δk ranged +/- 0.0003 m⁻² Bumps ranged +/- 5 mm Baseline orbits taken for every measurement.

Results

April 25th (fill 7783)

bi 5-qf1 $h \Rightarrow 0.016 + / - 0.288$ V = > -3.307 + / - 0.075bi 5-qf3 h = -1.008 + / -0.200 V = 0.748 + / - 0.005bo6-qd1 h = 0.442 + / -0.250 V = -1.228 + -0.119bo6-ad3 h = -0.404 + - 0.030V = > -0.318 + / -0.258 yo5-qd3 h = -1.157 + -0.529V = > -0.580 + / - 0.103yo5-qd1 h = -2.394 + / - 0.843V = 0.213 + - 0.202vi 6-qf1

 $h \Rightarrow 1.425 + / - 0.076$

h => -1.070 +/- 0.166 v => -0.441 +/- 0.260

0. 114

V = > -0.522 + /-

yi 6-qf3

May 3rd (fill 7809)

*all results in mm

0.171 +/-

V = > 0.566 + / -

h = 0.065 + / -

yi 6-qf1

V =>

0.034

0.449

0.499

Offset Installation

Without offset*

With offset*

```
bi 5-qf1
h \Rightarrow 0.016 + / - 0.288
 V = > -3.307 + / - 0.075
bo6-qd3
 h \Rightarrow -0.404 +/-0.030
 V = -0.318 + - 0.258
```

```
bi 5-qf1
 h \Rightarrow -1.131 + / - 0.500
 V = -2.842 + / - 0.797
bo6-qd3
h \Rightarrow -0.818 +/- 0.817
 V = 0.333 + / - 0.441
bi 5-qf1
h = -1.307 + -0.081
```

May 3rd
$$v \Rightarrow -0.369 +/- 0.105$$

 $v \Rightarrow -2.688 +/- 0.322$
 0.0606
 $0.052 +/- 0.606$
 $0.052 +/- 0.296$

bi 5-qf1

Installed survey offsets (in um)

*All values in mm

bi 5-bh1 -587 bo6-bh3 185

Error Sources

Lattice: Blue

0.06

X orbit

Ring

o Orbit Drift

 Orbits taken over ten seconds while idle at injection.

 Pronounced variation in both planes on the time scale of the measurement.

Orbits taken between 20:10:32 - 20:10:41, Fill 7809

Error Sources

o 10 Hz noise:

- Currently use 10000 orbits to create an average
 ~1.3 10Hz periods
- •Change orbit averaging to some multiple of the 10Hz

At Injection, x1 gain BPM sampling every 78 turns.

New Method

- o Improve the method again:
 - Modulate quad at 1Hz, bump at 2/3 Hz
 - Use RHIC Turn by Turn buffering down-sampled to 1/78.
 - Sampling extremely good at injection.
 - No visible 1 Hz component (or very small) at injection
 - Fit 1 Hz component to bump strength, and minimize
- o Potentially very fast, online method of returning result
- Hopefully easy to implement
 - Modulation available in IR quads and correctors
 - Several capabilities available
 - Modulate in physics or engineering units
 - Correctors can be modulated using sine or sawtooth waves
- o Less intrusive than other methods
 - Undone with a ramp activate allows easy return to program

2007 Goals

o New Method

- Test out during APEX time
 - 1-2 sessions
 - Proof of principle
 - Operational program bench test
- Operational release of a program that will perform BBA measurements
 - Calculation of offset data (frequency? TBD)
 - Utilization of failure time ("with beam" failures?)

o Ready with old method if new method fails

- Take more data across a greater bump range
- Will need dedicated time (APEX or other) to make fully operational
- Requires code overhaul in progress

o Fixing error sources

- Additional orbit averaging (7800 or 15600 turns vs. 10000).
- BBA with 10 Hz correction

More 2007 Plans

o Use BBQ to take absolute beta function measurements at the quad:

Fill 7809

Summary

o Recap

- 2 reasonable data runs.
 - Code advances.
 - Offsets found to vary a fair bit, but only two data sets.
 - Conclude method isn't the most robust, and slow to boot.
- Identified error sources
 - Orbit averaging and drift
 - 10 Hz noise

o Development of new method

- Improve both strength and speed of obtaining results.
- Hopefully easy to implement, contingency plan ready if not.

E-Cooling BBA 2005

Move beam position, modulate quadrupole at 1 Hz and measure million-turn BPM response at 1 Hz

Thin-lens correction and IR quad parameters

o Hoffstaetter/Willeke [PRST:AB 5, 102801 (2002)] found the scaling error in thin-lens approximation for IR quadrupoles:

$$\sigma^{-} = \frac{l\sqrt{k} - \sin(l\sqrt{k})}{2l\sqrt{k}}$$

Name	Length [m]	Strength k [m ⁻²]	β _x [m]	β _y [m]	Scaling error σ^-
bi5-qf3	3.39	0.1148	114.47	62.06	0.103
bi5-qf1	1.44	0.0809	76.10	82.83	0.014
bo6-qd1	1.44	-0.0809	83.00	78.36	0.014
bo6-qd3	3.39	-0.1148	61.87	148.49	0.103
bo11-qd1	1.44	-0.0809	80.91	76.45	0.014
bi12-qf1	1.44	0.0809	76.95	80.95	0.014

[•]Typical RHIC IR quadrupole parameters in β *=10m injection optics

T. Satogata

